Is the appearance of microcalcifications on mammography useful in predicting histological grade of malignancy in ductal cancer in situ?

H-P DINKEL, MD, A M GASSEL, MD and A TSCHAMMLER, MD

Departments of Radiology and Pathology, University of Würzburg, Josef-Schneiderstrasse 2, D-97080
Würzburg, Germany

Abstract. It has been proposed that the grade of malignancy of ductal carcinoma in situ (DCIS) of the breast can be estimated by the morphology of microcalcifications found on mammography. We correlated microcalcifications and histopathology in a retrospective blinded review. We reviewed all patients who underwent excisional breast biopsy over a 5 1/2-year period. Mammograms and pathology slides of all patients (n=49) with DCIS of the breast were included in a blinded retrospective analysis. Mammographic microcalcifications were divided into four categories, “linear branching”, “coarse granular”, “fine granular” or “no microcalcification”. Independently, pathology specimens were assigned to poorly, intermediately and well differentiated categories according to the consensus classification of DCIS introduced by the European Organisation for the Research and Treatment of Cancer. Two patients had no microcalcifications. 25 (53%) of the remaining 47 patients had “linear branching” microcalcifications, 10 (21%) had “coarse granular” and 12 (25.5%) had “fine granular” microcalcifications. 19 patients (40%) had poorly differentiated, 23 (49%) intermediately differentiated and 5 (11%) well differentiated subtypes of DCIS. 14 (56%) of the 25 patients with “linear branching” microcalcifications had poorly differentiated DCIS, 10 (40%) had intermediately differentiated and 1 (4%) had well differentiated DCIS. 3 (30%) of 10 patients with “coarse granular” microcalcifications had poorly differentiated DCIS, 5 (50%) had intermediately differentiated and 2 (20%) had well differentiated DCIS. 2 (17%) of 12 patients with “fine granular” microcalcifications had poorly differentiated DCIS, 8 (67%) had intermediately differentiated and 2 (17%) had well differentiated DCIS. These findings were not statistically significant. In conclusion, “linear branching” microcalcifications tended to be associated with higher pathological grading. However, correlation was poor and there was considerable overlap between categories. Histological type of DCIS cannot be predicted prospectively on mammographic appearances.

Ductal carcinoma in situ (DCIS) of the breast is rarely diagnosed clinically [1]. DCIS accounts for one-sixth to one-third of screening-detected breast cancers [2–4]. Special interest has recently been given to the histological subtype of DCIS, as evidence has emerged for a correlation between subtypes and recurrence rates. Furthermore, the probability of development into invasive cancer is related to the subtype of DCIS [5].

Traditionally, DCIS is categorized according to histological architectural characteristics and the presence or absence of comedo necrosis [6]. Architectural classification tends to be subject to interobserver variability [7]. Two major groups of DCIS are broadly distinguished by means of a simple but useful classification: comedo and non-comedo types [8]. Comedo-type DCIS tends to be more aggressive, has a higher recurrence rate and more often converts into invasive cancer than non-comedo forms [4, 5, 9, 10]. Pathologists are now aware of the importance of cytonuclear differentiation [11–13]. White et al [14] found that the predominant nuclear grade was the best predictor of local recurrence. In 1989, Lagios et al [5] combined necrosis, nuclear grade and histological architectural pattern to define four subtypes of DCIS. In 1994, Holland et al [15] proposed a new classification for mammary DCIS, based primarily on cytonuclear grade and which uses histological architectural differentiation as a secondary characteristic. This system defines three main subtypes of DCIS: poorly differentiated, intermediately differentiated and well differentiated. Their model constituted...
the foundation of the consensus classification of the Third DCIS Working Party of the European Organisation for the Research and Treatment of Cancer (EORTC), which currently is a widely accepted histological classification system for non-invasive ductal carcinoma of the breast [16] (Table 1).

Holland and Hendriks [17] have also suggested a correlation between mammographic type of microcalcification and histological subtype of DCIS of the breast. The ability to predict grade of malignancy of DCIS by mammographic appearances could have implications for patient prognosis and choice of therapeutic options.

The purpose of this blinded study was to assess whether mammographic type of microcalcification could be correlated with comedo-necrosis, nuclear grade and EORTC histological subtype, and therefore whether standard mammography is able to predict the subtype of DCIS.

Methods and material

We reviewed the pathology reports of all patients who underwent excisional breast biopsy in our university hospital between January 1993 and August 1998, looking for all cases of DCIS of the breast. All patients on whom both pathology slides and mammography films could be obtained were included in a blinded evaluation. Mammography was performed on a Siemens Mammomat 2 in two standard projections, craniocaudal and lateromedial. The mammograms were re-evaluated in consensus by radiologists with special interest and training in breast radiology. Magnification views were not included in the film reading as these were only available in a minority of cases.

The predominant mammographic types of microcalcification were divided into four categories, “none”, “linear branching”, “coarse granular” and “fine granular”, as defined by Holland and Hendriks [17], in a blinded retrospective evaluation. Pathology specimens were reviewed by an experienced breast pathologist who was unaware of the clinical findings and the mammographic appearances, and who classified the specimens according to their predominant histological subtype. The following histological characteristics were used: (A) architecture (solid, cribriform, papillary, micropapillary, clinging type); (B) presence of comedo necrosis; (C) nuclear malignancy grade (low, intermediate, high) (Table 2); and (D) EORTC grade (well differentiated, intermediateely differentiated, poorly differentiated) [16].

For evaluation, nuclear malignancy grade and EORTC grading were correlated with type of mammographic microcalcification.

All data were entered into a PC database (Lotus Approach, Version 3.0, Lotus Development Cooperation, Ratingen, Germany) and further processed on a spreadsheet application (Lotus 123, Version 5.0, Lotus Development Cooperation, Ratingen, Germany). Statistical evaluation was performed using the PC-MEDAS statistical software package, version 1998 (Grund-EDV Systeme, 97206 Margetshöchheim, Germany), using the χ^2 test and Fisher and Yates's exact test for testing the association between microcalcification type and histopathological subtype.

Results

Either mammograms or pathology slides were unavailable in 19 patients. Two patients with well differentiated DCIS had no microcalcifications. 25 (53%) of the remaining 47 patients constituting our study group had predominantly linear microcalcifications, 10 (21%) had coarse granular and 12 (25.5%) had fine granular microcalcifications. Mean patient age was 53.4 years (26.5–77.3 years). Mean tumour size of the pathology specimens was 12.8 mm (range 4–40 mm).

18 (38%) of the 47 patients with microcalcifications had high nuclear grade histopathology, 17 (36%) had intermediate and 12 (25%) had low nuclear grade histopathology.

Numeric correlation of mammographic microcalcification type and nuclear malignancy grade is given in Table 3; it did not reach statistical significance ($p>0.06$). Micromcalcification type

Table 1. Definition of EORTC grading of DCIS

<table>
<thead>
<tr>
<th>EORTC grading of DCIS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poorly differentiated DCIS</td>
<td>High NMG, comedo necrosis with amorphous microcalcifications</td>
</tr>
<tr>
<td>Intermediately differentiated DCIS</td>
<td>Intermediate NMG, comedo necrosis or single cell necrosis</td>
</tr>
<tr>
<td>Well differentiated DCIS</td>
<td>Low NMG, frequently small cell type, micropapillary patterns, necroses rare, fine granular microcalcifications</td>
</tr>
</tbody>
</table>

EORTC, European Organisation for the Research and Treatment of Cancer; DCIS, ductal carcinoma in situ; NMG, nuclear malignancy grade.
and EORCT grading were not significantly correlated ($p>0.12$) (Table 4).

Discussion

Since the initial description of microcalcifications in breast cancer by Leborgne in 1951 [18], it has become clear that microcalcifications do not represent the non-invasive precursor of cancer but rather its invasive form [19, 20]. There have been several descriptions of the patho-anatomical correlation between DCIS and microcalcifications [17, 19, 21, 22]. The histological substrate of linear and coarse granular microcalcifications is comedo necrosis [17, 19, 21, 23]. These microcalcifications are amorphous and tend to occur along the central axis of the ductal tree that is filled or covered by the solid architectural type of DCIS, which corresponds best to poorly differentiated DCIS according to EORTC grading (Figure 1b). Depending on their degree of coalescence, amorphous microcalcifications form rod-like structures that may be branching or may have a more coarse granular appearance [4, 17, 20]. There is overlap between these two types and both may be found in the same breast (Figure 1a). A second type of microcalcification consists of laminated concentric layers of calcium and resembles psammoma bodies [17, 19, 24] (Figure 2). These are not the result of cell necrosis but are the product of calcium-loaded apocrine secretions from tumour cells. The size of these bodies is much smaller than that of the amorphous necrotic type. This type is most frequently found in non-comedo DCIS [17, 23], especially in the cribriform subset where these bodies tend to fill the mesh holes of the sieve (cribriform=sieve-like) (Figure 2b).

Knowledge of the histological subtype may have therapeutic importance in managing patients with DCIS. Mastectomy, which was the standard procedure for DCIS until recently [25, 26], may represent overtreatment [27]. Lower grade DCIS less frequently turns into invasive cancer and tends to recur less frequently [28, 29], while patients with comedo types (poorly differentiated DCIS) almost invariably develop invasive cancer when untreated and have higher recurrence rates after breast-conserving resection [30].

It has been suggested that mammography could help in distinguishing the different histological subtypes of DCIS [15, 31]. Holland et al [15] considered that the mammographic appearance showed quite good correlation with their classification of DCIS. This might have implications for management. Microcalcifications associated with more aggressive lesions, “malignant microcalcifications” [32], serve as a clear indication for excisional biopsy, whereas more benign-appearing fine granular microcalcifications that tend to be associated with well differentiated DCIS and to have a lower incidence of invasion could be managed less aggressively.

Fine needle puncture and large core needle biopsy [33], especially vacuum-assisted core biopsy devices [34], achieve very reliable results in the presence of microcalcifications. In the presence of microcalcifications that are more likely to be associated with lower grades of

| **Table 2.** Definition of nuclear malignancy grading (NMG) of ductal carcinoma in situ (DCIS) |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| NMG of DCIS | High NMG | Intermediate NMG | Low NMG |
| | High nuclear polymorphism; size of nuclei 15–20 μm, coarse chromatin, prominent nucleoli, many mitoses | Moderate nuclear polymorphism; size of nuclei 10–15 μm, chromatin uncharacteristic, prominent nucleoli, some mitoses | Monomorphism of nuclei; size of nuclei <10 μm, dense chromatin, mitoses rare |

| **Table 3.** Correlation of microcalcification type and nuclear malignancy grading (NMG) |
|--|--|--|--|
| **NMG** | **Mammographic microcalcification type** | **Mammographic microcalcification type** | **Mammographic microcalcification type** |
| | Linear | Coarse granular | Fine granular |
| Low | 3 | 4 | 5 |
| | (12%) | (20%) | (42%) |
| Intermediate | 8 | 4 | 5 |
| | (32%) | (20%) | (42%) |
| High | 14 | 2 | 2 |
| | (56%) | (10%) | (17%) |
| Total | 25 | 10 | 12 |
| | (53%) | (21%) | (26%) |
| Total (χ²=8.48, $p=0.063$) | | | |
| | | | |

Maximum likelihood test not significant.
malignancy, it could be valid to use core biopsy as the sole method for obtaining specimens for histological assessment.

Mammographically, poorly differentiated DCIS was most frequently associated with microcalcifications of the linear type, in 74% of cancers in the present study, but was also seen with coarse (16%) and fine granular types (11%). On the other hand, intermediately differentiated DCIS was found in 10 (40%) of 25 cases of linear microcalcifications. There was a negative correlation between linear microcalcification type and well differentiated DCIS; the linear microcalcification pattern being found in only one case with low grade DCIS.

Intermediately differentiated DCIS (8 of 12; 67%) had the highest proportion of fine granular microcalcifications. However, linear microcalcifications (10/23; 43%) were more frequent than fine granular (8/23; 35%) or coarse granular (5/23; 22%) in intermediately differentiated DCIS.

Holland et al [15] stated that well differentiated DCIS with a non-solid growth pattern is usually associated with multiple clusters of fine granular microcalcifications. In the five cases of well differentiated DCIS in our study, fine granular microcalcification was found in only two. One of five cases of well differentiated DCIS had linear microcalcifications, which were, however, rather faint so that they did not represent a straightforward case of the “malignant microcalcification” type.

Our findings clearly demonstrate that there is poor correlation between histological types of DCIS and predominant mammographic appearance, with significant overlap. This is consistent with the findings of others [4, 35]. Yeh et al [35] were not able to predict the subtype of DCIS reliably, which may also have been influenced by their material mostly containing well differentiated DCIS [35].

Another difficulty is that DCIS is not homogeneous. There can be multiple radiological types of microcalcification in the same patient and even in the same breast (Figure 1). Moreover, multiple different histological subtypes can also occur in the same breast. Finally, there may be considerable interobserver variability in histopathology assessment, even among experienced pathologists. Holland and Hendriks [17] found considerable overlap of different types of DCIS in patients with

Table 4. Correlation of microcalcification type and EORTC grading

<table>
<thead>
<tr>
<th>EORTC grading</th>
<th>Mammographic microcalcification type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Linear</td>
<td>Coarse granular</td>
</tr>
<tr>
<td>Well differentiated</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(4%)</td>
<td>(20%)</td>
</tr>
<tr>
<td>Intermediately differentiated</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(40%)</td>
<td>(50%)</td>
</tr>
<tr>
<td>Poorly differentiated</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(46%)</td>
<td>(30%)</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(53%)</td>
<td>(21%)</td>
</tr>
</tbody>
</table>

$\chi^2=6.90$, $p=0.12$

EORTC, European Organisation for the Research and Treatment of Cancer.

Figure 1. 74-year-old woman with ductal carcinoma in situ (DCIS). (a) Detail of lateromedial mammo-gram shows predominantly linear branching microcalcifications (long arrow). Coarse microcalcifications are also present (short arrow). Both types of microcalcification are likely to be found in poorly differentiated DCIS. However, a similar appearance is found in intermediately differentiated DCIS and even in isolated cases of well differentiated DCIS. (b) Pathology specimen demonstrates solid type of poorly differentiated intraductal carcinoma, with central comedo necrosis and amorphous microcalcifications (arrows). Low cytonuclear differentiation grade. Hematoxylin eosin staining; magnification 250×.
“granular” microcalcifications, whereas linear microcalcifications were exclusively found in poorly differentiated DCIS.

Stomper and Connolly [4] in 1992 correlated type of microcalcification with comedo vs non-comedo DCIS and found considerable overlap. Theoretically, correlation between the new EORTC grading and type of microcalcification may be expected to be even lower because the EORTC grading also includes factors other than central necrosis, which are less likely to be related to morphological signs in mammography. One the other hand, differentiated DCIS of solid architectural pattern may rarely show marked necrosis [15] resembling linear or coarse granular microcalcifications on mammograms, which could then lead to misdiagnosis of a poorly differentiated DCIS.

Even sophisticated computer calcification analysis could not convincingly overcome the inherent difficulties produced by overlap between different types of mammographic microcalcifications [36].

What is the clinical significance of the finding of linear, coarse or fine granular microcalcifications? The value of the determination of microcalcification morphology lies in the ability to predict the likelihood of malignancy, in other words in the differential positive predictive value [37, 38]. Granular microcalcifications may be found in all subtypes of DCIS, but also in fibrocystic change [17]. Fine granular or punctate microcalcifications have a relatively low positive predictive value for cancer. Liberman et al found only 1 malignancy (9%) in 11 cases of punctate microcalcifications and their material represented a highly selected group of patients in which many similar yet probably benign lesions had not undergone excisional biopsy [38]. The value of finding linear as well as pleomorphic microcalcifications lies in the fact that these entities are highly specific, if not pathognomonic, for DCIS [38]. Breast biopsy is therefore warranted in all patients in which such “malignant microcalcifications” are found [32].
Do microcalcifications predict grade of DCIS?

Acknowledgment

We would like to thank Dr Steven Lourens, Berne, for linguistic revision of the manuscript.

References

